CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	23

1 (a) (i)

(ii) linear and
$$180^{\circ}$$
 (1) [3]

(b) (i)
$$CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2$$
 (1)

is burnt in an excess of oxygen/air

or is completely combusted

(c)

$$CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2$$

 $\Delta H_f \ominus / kJ \, mol^{-1} \, x -395 \, 2(-298)$ (1)
 $\Delta H_{reaction} = -395 + 2(-298) - x = -1110 \, kJ \, mol^{-1}$ (1)
gives $x = -395 + (-596) + 1110 = +119 \, kJ \, mol^{-1}$ (1) [3]

(d) (i)
$$CS_2 + 2NO \rightarrow CO_2 + 2S + N_2$$

or
 $CS_2 + 2NO \rightarrow CO + 2S + N_2O$

correct products (1)

correct equation (1)

[Total: 12]

	Pa	Page 3					k Scheme				Syllabus	Paper	
					GCE AS	S/A LEV	EL – May	June 2	2013		9701	23	
2	(a)	(i)	if the	e conditi	ons of a s	system i	n equilibriu	ım are	changed			(1)	
			the p	oosition	of equilib	rium mo	oves so as	to redu	ice that cha	ange		(1)	[2]
		(ii)	lowe	er tempe	rature							(1)	
			beca	ause the	forward	reaction	is exother	mic				(1)	
			high	er press	ure							(1)	
				ause the	forward	reaction	shows a r	eductio	n in volum	e			
			or there	e are fev	ver moled	cules/m	oles on RH	S of ed	quilibrium			(1)	[4]
	(b)				CO_2	+	H_2	\rightleftharpoons	СО	+	H ₂ O		
		initi	al mo	les	0.70		0.70		0.30		0.30		
		equ	ıil. mc	oles	(0.70-x)		(0.70-x)		(0.30+x)		(0.30+x)	(1)	
		equ	ıil. coı	ncn.	(0.70–x)	-	(0.70-x) 1		(0.30+x) 1		(0.30+x) 1		
		K _c =	= <u>(0.3</u> (0.7	$\frac{(0+x)^2}{(0-x)^2} =$	1.44							(1)	
		at e	quilib	0.25 orium,								(1)	
		n(C and		$n(H_2) =$	0.70 – 0	.25 = 0.	45 moles						
				n(H ₂ O)	= 0.3 + 0.	25 = 0.	55 moles					(1)	[4]

[Total: 10]

		GCE AS/A LEVEL – May/June 2013	9701	23	
3	(a) (i)	He or Ne or Ar or Kr		(1)	
	(ii)	P or As		(1)	
	(iii)	Br		(1)	
	(iv)	Na allow Ar		(1)	
	(v)	Si		(1)	
	(vi)	P allow Si		(1)	
	(vii)	Cl or F or Br		(1)	[7]
	(b) (i)	any two from P_4O_6 , SO_2 and Cl_2O_7		(1+1)	
	(ii)	Al_2O_3 or SiO_2		(1)	
	(iii)	MgSO ₃		(1)	[4]
	(c) (i)	Si is giant molecular/giant covalent or			
		P, S, and Cl are simple molecular		(1)	
	(ii)	the molecules are S ₈ , P ₄ , C l ₂		(1)	
		larger molecules have more electrons		(1)	
		and hence greater van der Waals' forces		(1)	[4]
		[Tota			: 15]

Mark Scheme


Syllabus

Paper

Page 4

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	23

4 (a) (i)

one mark for each correct compound, R, S and T

allow correct cis and trans versions of compound T for 2 marks (3×1)

(ii) reduction

NaBH₄ or LiA
1
H₄ or H₂/Ni or Na/C₂H₅OH (1) dehydration

$$P_4O_{10}/P_2O_5$$
 or H_3PO_4 or conc. H_2SO_4 or Al_2O_3 (1) [5]

(b)

Tollens' reagent	NO REACTION		
HCN	CH ₃ (CH ₂) ₄ C(OH)CH ₃ CN		
K ₂ Cr ₂ O ₇ /H ⁺	NO REACTION		

one mark for each correct answer (3×1) [3]

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	23

(c) Na₂CO₃ or NaHCO₃ effervescence/colourless gas

or

Na colourless gas

or

 PCl_3/PCl_5 etc. steamy fumes

or

 $C_2H_5OH/conc.\ H_2SO_4$ sweet smell of ester

or

K₂Cr₂O₇/H⁺ orange solution becomes green

correct reagent (1)

correct observation (1) [2]

[Total: 10]

			GCE AS/A LEVEL – May/June 2013	9701	23	
5	(a)	(i)	CH ₂ =CHCO ₂ H		(1)	
		(ii)	BrCH ₂ CHBrCH ₂ OH		(1)	
	(iii)	product is HOCH ₂ CH(OH)CH ₂ OH			
			correct addition across >C=C<		(1)	
			original –CH ₂ OH remains		(1)	
	(iv)	HO ₂ CCO ₂ H		(1)	[5]
	(b)	(i)	nucleophilic substitution		(1)	
		(ii)	oxidation		(1)	[2]
	(c)	(i)	step I			
			H_2		(1)	
			heat with Ni catalyst		(1)	
			step II			
			acidified K ₂ Cr ₂ O ₇		(1)	
			heat or distil off product		(1)	
		(ii)	structural isomerism or			
			functional group isomerism		(1)	[5]
	(d)	bot	h oxidation and reduction have occurred or			
		disp	proportionation has taken place		(1)	[1]
					[Total:	: 13]

Mark Scheme

Syllabus

Paper

Page 7